Second-order asymptotic theory for calibration estimators in sampling and missing-data problems

نویسنده

  • Zhiqiang Tan
چکیده

Consider three different but related problems with auxiliary information: infinite population sampling or Monte Carlo with control variates, missing response with explanatory variables, and Poisson and rejective sampling with auxiliary variables. We demonstrate unified regression and likelihood estimators and study their second-order properties. The likelihood estimators are second-order unbiased but the regression estimators are not. For the missing-data problem and survey sampling, no estimator studied always has the smallest second-order variance even after bias correction. However, the calibrated likelihood estimator and bias-corrected, calibrated regression estimator are second-ordermore efficient than other bias-corrected estimators if a linearmodel holds for the conditional expectation of the response or study variable given explanatory or auxiliary variables. © 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Calibration Weighting to Compensate for Extreme Values, Non-response and Non-coverage in Labor Force Survey

Frame imperfection, non-response and unequal selection probabilities always affect survey results. In order to compensate for the effects of these problems, Devill and Särndal (1992) introduced a family of estimators called calibration estimators. In these estimators we look for weights that have minimum distance with design weights based on a distance function and satisfy calibration equa...

متن کامل

Weighted Likelihood Estimation under Two-phase Sampling.

We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase stratified sampling without replacement. We also consider several variants of WLEs involving estimated weights and calibration. A set of empirical process tools are developed including a Glivenko-Cantelli theorem, a theorem for rates of convergence of M-estimators, and a Donsker theorem for the inverse probabi...

متن کامل

Weighted Likelihood for Semiparametric Models and Two-phase Stratified Samples, with Application to Cox Regression

Weighted likelihood, in which one solves Horvitz-Thompson or inverse probability weighted (IPW) versions of the likelihood equations, offers a simple and robust method for fitting models to two phase stratified samples. We consider semiparametric models for which solution of infinite dimensional estimating equations leads to √ N consistent and asymptotically Gaussian estimators of both Euclidea...

متن کامل

An EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data

The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2014